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Highlights 

● Airborne LiDAR is ideal to predict forest thermal environment at a high resolution 

● We used Maximum height, Plant Area & Vertical Complexity Index as structure 

metrics 

● Forest structure explained 91 % of microclimate variability at a 10-m resolution 

● We mapped the buffering or amplification effect of forest on microclimate 

temperature 

● Ecologists, conservationists and forest managers would highly benefit from such 

maps 

 

Abstract  

Mapping the microclimate effect of forest canopies on understory temperature requires 

spatially explicit predictors at very fine spatial resolutions. Light Detection And Ranging 

(LiDAR) offers promising prospects in that regard, as it allows capturing the vertical 

dimension of vegetation structure at a very high resolution over large areas. 

To explore the potential of airborne LiDAR-derived metrics to predict understory 

temperature, we focused on the forest of Blois (France), a 2740-ha lowland managed forest 

dominated by oak (Quercus petraea). We installed HOBO sensors measuring microclimate air 

temperature at one-metre height in 53 stands of contrasting vegetation structure, from 

open to very dense and from young regeneration to mature stages. Using a nearby weather 

station as the macroclimate temperature reference, we calculated the slope (log scale) 
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coefficient of the linear regression between microclimate and macroclimate, as a simple 

parameter describing the microclimatic buffering (log(slope) < 0) or amplification (log(slope) 

> 0) capacity of the habitat.  

An airborne LiDAR flight was conducted during summer 2021, matching the timing of our 

temperature measurements. From the resulting 3D point cloud, three complementary 

metrics of forest structure were derived: the maximum height, the Plant Area Index and the 

Vertical Complexity Index. They were calculated for circular buffers of different radii (1 m to 

100 m) centred on each HOBO sensor.  

We found that the 5-m radius combining the three metrics into a single multivariate model 

explained the greatest proportion of variance in the microclimate effect of each stand (R² = 

0.91). We mapped the buffering or amplification effect of vegetation structure on 

understory temperatures over the entire forest of Blois at a 10-m resolution. 91.4 % of the 

surface of the forest was significantly buffered relative to macroclimate temperature, while 

2.7 % was amplified, especially in road verges, clear-cut and regeneration areas. Based on 

our simple linear model, we were able to derive understory air temperature maps for any 

temporal resolution (i.e. hourly, daily, or seasonal). The results highlight the great capacity of 

airborne LiDAR to retrieve forest structure parameters and generate high-resolution maps of 

the thermal environment. 

Applications for mapping the buffering or amplification of microclimate temperature are 

plentiful, especially in the context of climate change. They include improving the 

understanding of physiological processes such as thermoregulation or phenology, modelling 

the thermal connectivity of the landscape, improving species redistribution models, spotting 

microrefugia for conservation, informing forest management for tree regeneration or 
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wildfire control, or even prioritising cooling recreational areas for humans to escape 

heatwaves in urban forests. 

 

Graphical abstract 
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1. Introduction 

To investigate current and future impacts of temperature on species’ fitness, survival or 

distribution, ecologists often rely on available gridded macroclimate data, with a coarse 

spatial resolution of 1 km² or more. This contrasts with an organism-relevant scale, where 

depending on their body size and physiology, species respond to variations in microclimatic 

temperatures at a resolution of centimetres to a few metres (Bramer et al., 2018). Another 

major issue is that macroclimate data is interpolated from weather stations, which are 

always located in open areas, exposed to sunshine and dominant winds and away from the 

shade of trees for the sake of standardisation (De Frenne and Verheyen, 2016). Below forest 

canopies, the difference between macroclimate and the local microclimate temperature is 

especially significant (Geiger et al., 2003). In the understory, species usually experience a 

buffered microclimate, with higher minimum and lower maximum air temperatures, as 

vegetation moderates extreme temperatures through mechanisms such as transpiration and 

shading (De Frenne et al., 2021). However, temperatures can instead be amplified near the 

ground in open or sparse vegetation (Gril et al., 2023; Pincebourde and Suppo, 2016; von Arx 

et al., 2013). This is especially true when airflow is reduced by trees, causing a reduction in 

thermal mixing alongside typical absorption of radiation, which may not be fully 

compensated by transpiration when vegetation is sparse, e.g. within an intraforest clearing, 

meadows, or under very low or sparse canopies, where lower minima and higher maxima 

are usually recorded for temperature compared to free-air weather station records. 

These buffering or amplification effects can be highly heterogeneous, depending on local 

parameters such as vegetation structure. In managed forests under regular forestry, this 

results in diverse conditions of microclimate across small areas (Chen et al., 1999). To 
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effectively quantify this fine-scale thermal heterogeneity, we need spatially explicit models 

of temperature at fine spatial resolutions and across large spatial extents (Milling et al., 

2018; Zellweger et al., 2019b). 

Recent efforts have been made to obtain and gather global microclimatic data, with the goal 

to downscale temperature grids and get closer to conditions experienced by most terrestrial 

organisms (Lembrechts et al., 2020). Field-acquired dendrometric data from forest 

inventories are good predictors of the microclimate effect in forests (Zellweger et al., 2019a), 

but they are measured pointwise, and are thus inadequate for continuous mapping over a 

whole landscape. Using remote sensing data to upscale field measurements could help in 

tackling this challenge. Well-chosen remote sensing-based predictors may also have an 

equal, or even higher capacity than traditional field-measured variables to explain the 

variability in microclimate air temperature (Greiser et al., 2018; Kašpar et al., 2021). For 

instance, predictors acquired by satellites such as digital elevation models or the Normalised 

Difference Vegetation Index (NDVI) have wide coverage and have been used to generate 

maps of understory temperature over Europe at a 25-m resolution (Haesen et al., 2021). 

The use of detailed environmental descriptors may be relevant – if not necessary – for land 

use planning, biodiversity conservation, better informed species distribution models, or for 

informing forestry management (Lenoir et al., 2017; Haesen et al., 2023; Randin et al., 2020; 

Zellweger et al., 2019b). Airborne thermal imaging brings interesting perspectives in that 

regard (Hoffrén and García, 2023), but it can only record canopy temperature, not 

understory temperatures near the ground – where most of the biodiversity lives in 

temperate forests (Gilliam, 2007). While the vertical structure of the vegetation is not well 

captured by satellite or airborne multispectral imagery, airborne Light Detection And 
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Ranging (LiDAR) allows the user to access the whole vertical structure hidden below the tree 

crown, including the understory shrub layer in forests, an important microclimate driver 

often neglected in microclimate modelling (Kovács et al., 2017; Stickley and Fraterrigo, 

2021). LiDAR is the perfect tool to describe the fine-scale 3-dimensional (3D) structure of a 

forest and has been used for this purpose for decades (Davis et al., 2019; Lim et al., 2003; 

Nelson et al., 1984; Moudrý et al., 2022; Zellweger et al., 2019b). LiDAR is thus most 

appropriate to map microclimate processes under tree crowns (Frey et al., 2016; George et 

al., 2015; Greiser et al., 2018; Jucker et al., 2018). 

From airborne LiDAR point clouds, we can quantify three components of vegetation 

structure, especially relevant in forest ecosystems: height, plant area index and vertical 

complexity. Tall, structurally complex forests with a large amount of vegetation are expected 

to be the most thermally buffered relative to macroclimate (Frey et al., 2016; Jucker et al., 

2018). After creating a canopy height model from top vegetation points extracted from the 

3D point cloud, maximum height can easily be mapped (Jucker et al., 2018; van Leeuwen and 

Nieuwenhuis, 2010).  

Leaf Area Density profiles – or, more accurately, Plant Area Density profiles, given that it is 

difficult to separate leaves from other plant material – can be assessed from LiDAR point 

clouds (Bouvier et al., 2015). From these profiles, Plant Area Index (PAI) can be computed 

(Lenoir et al., 2022). PAI represents the cumulative area of biotic tissue per unit ground area 

and is related to Leaf Area Index (LAI), a key parameter for modelling exchanges (water, 

carbon and radiation and heat energy) between the biosphere and the atmosphere (Yang et 

al., 2019) which is acknowledged to have strong influence on understorey microclimate (De 

Frenne et al., 136 2021). 
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Vegetation structural complexity is the third important morphological component of an 

ecosystem (Valbuena et al., 2020), and can be summarised by the Vertical Complexity Index 

(VCI), which quantifies the "evenness" of plant material distribution, i.e. whether vegetation 

is clustered into layers – VCI close to 0 – or distributed evenly – VCI close to 1 – along the 

vertical profile (van Ewijk et al., 2011).  

Here, we propose a method to map microclimate temperature in forest ecosystems, based 

on simple linear models and three integrative predictors of forest structure derived from 

airborne LiDAR. We focus on a managed forest with little to no variation in topography and 

with a homogenous composition in terms of the dominant tree species, but very diverse 

stand structures.  

Our goal was to quantify the buffering or amplification effect of the forest matrix on 

understory air temperature, and to find the spatial scale at which these opposing processes 

operate. Instead of mapping microclimate temperature directly on the relevant time step 

(e.g. hourly, weekly or monthly), we used a novel approach to map a summary metric 

representing the impact on the microclimate generated by vegetation structure (i.e. the 

buffering or amplification capacity, Fig. 1; Gril et al., 2023). From this metric, any point-in-

time or summary statistic of microclimate temperature can easily be calculated. We 

investigated the best scale of effect of our three LiDAR predictors, and mapped the fine-scale 

thermal environment of the forest at this optimal resolution. 

 



9 
 

2. Material and methods 

2.1. Study area and sampling design 

The forest of Blois is a 2,749-ha block of forest, with little modification of its geographical 

delimitation since the fifteenth century, being part of the royal, then state’s domain. It is a 

lowland temperate forest dominated by Quercus petraea (sessile oak), with Carpinus betulus 

(hornbeam), Ilex aquifolium (holly) and Fagus sylvatica (beech) in the understory. The forest 

is managed by the French national forest office (ONF) as a regular “high forest”. It is 

subjected to a degraded oceanic climate (Joly et al., 2010), with a mean annual temperature 

of 11.3°C (absolute minimum - 12°C, absolute maximum 40.1°C) and annual precipitation of 

744 mm over the 1996-2004 period (ONF data). The elevation ranges from 94 to 141 m, with 

limited topographic variation. Soils are poor and acidic. To study a gradient of forest 

structure, we established 53 plots throughout the forest (Fig. 2) in diverse stages of forest 

management: seed trees, thicket, saplings, poles, young, adult, or mature stands. 

 

2.2. Data acquisition 

2.2.1. Microclimate and macroclimate temperature measurements 

We measured hourly microclimate temperatures with commonly used sensors (Bramer et 

al., 2018), Onset® HOBO® Pendant data loggers UA-001-64, which have a manufacturer-

reported accuracy of ± 0.53°C from 0° to 50°C, and resolution of 0.14°C at 25°C. One sensor 

was placed at the centre of each plot, and localized with a Trimble Geo 7X Differential Global 
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Positioning System, with a precision of 50 centimetres in open areas but lower (up to about 

2 metres) under a dense canopy. Sensors were set up at 1-m height above the ground 

surface on the northside of a tree trunk (George et al., 2015). To prevent overheating due to 

the exposure to direct solar radiation, sensors were hung by a hook inside homemade white 

shields shaped like caps to ensure that there is sufficient shade and airflow at the sensor 

level (Gril et al., 2023; Zellweger et al., 2019a), made out of a 15-cm long, 10-cm wide PVC 

tube (See Fig. S0). Hourly macroclimate temperatures were recorded from a weather station 

located in a grassland outside but close to the forest (Fig. 2). The macroclimate sensor was 

shielded and placed at 1.5-m high, a common height for standardised weather stations, 

typically within 1.2 to 2 m above ground. Because of the deciduous canopy and because it is 

the most crucial period for plants and many organisms, we focused on the leaf-on period, 

from the beginning of June 2021 to the end of September 2021, representing a total of 

155,018 hourly microclimate temperature measurements across our 53 plots.  

 

2.2.2. Airborne LiDAR data 

High-density LiDAR data were acquired by the private company ALTOA 

(http://www.altoa.fr/) on the 17th of June 2021, which is also why we focused this study on 

the leaf-on period. The LiDAR sensor used was a RIEGLVQ780-I mounted on a Partenavia P68 

Observer Islander. Flight and sensor specifications are described in Table 1. Pre-processing 

steps such as point cloud filtering, classification (vegetation, soil, other) and point 

normalisation according to soil surface elevation were also performed by ALTOA. We 

removed points located in artificial surfaces such as buildings according to the national layer 

http://www.altoa.fr/
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BD TOPO® (provided by the National Institute of Geographic and Forest Information, IGN 

2021, v. 3_0), plus a 1-m buffer around these polygons. 

 

Table 1: Characteristics of the LiDAR sensor and flight 

Flight Altitude 900 m 

Wavelength NIR 

Pulse frequency 2000 kHz 

Mean total point density 72.6 pts/m² 

Mean ground points density 9.7 pts/m² 

Overlap between flight lines 60 % 

Scan angle +/- 30° 

Precision (Z) 4.5 cm 

Geolocation error (XY) < 0.1 m 

Diameter of the spot on the ground 16.7 cm 

 

2.3. Data processing 

 2.3.1. Computing the buffering or amplification capacity 

Recent studies have introduced a new conceptual model linking microclimate temperature 

to macroclimate temperature (De Frenne et al., 2021; Gril et al., 2023). The model, validated 

in a wide range of temperate forest environments, uses a simple linear relationship and 

requires only two parameters: the slope and the equilibrium. The slope of the linear 

relationship between microclimate and macroclimate describes the buffering (< 1) or 
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amplification (> 1) capacity of the habitat (Fig. 1) and was found to be dependent on the 

surrounding vegetation. With a log-transformation of the slope, a value of 0 means a neutral 

effect of forest on temperature, while negative and positive values indicate buffering and 

amplification, respectively. We used a log-transformation for two reasons: first, it is easier to 

understand the meaning of the microclimate effect if the variable is centred on zero, where 

zero means a neutral effect. And second, this allows for log-log relationships in the 

subsequent modelling, in case a variable has a non-linear effect.  The slope parameter or its 

log-transformation can be modelled with the usual drivers of microclimate, including forest 

structure metrics (Gril et al., 2023).  

As for the equilibrium, it is the temperature at which microclimate equals macroclimate, i.e. 

the point where the identity line (Y = X) crosses the regression line of the linear relationship 

between microclimate and macroclimate (Fig. 1, Appendix 1). Unlike the y-intercept of a 

regression, it has a biophysical meaning. During sunny days, large incoming radiative fluxes 

exacerbate the difference between microclimate and macroclimate temperatures in forests. 

On the opposite, in case of wet, cloudy days with low radiative fluxes, a mild temperature is 

expected inside and outside the forest, leading to this situation of “equilibrium”. Therefore, 

the equilibrium can be approximated by the mean macroclimate temperature. Within a 

given season and small region, like the forest of Blois, it can be considered constant and 

independent from forest structure (Gril et al., 2023). We verified this independence by 

calculating the correlation coefficients and R² of linear models relating equilibrium 

temperatures to forest structure metrics (Appendix 2). 
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With both the slope and the equilibrium, the intercept can be deduced (see Appendix 1 for a 

demonstration), and therefore we have the complete linear relationship between 

microclimate and macroclimate. 

 

Fig. 1. The concept of the slope and equilibrium approach: two simple parameters 

summarising the linear relationship between microclimate and macroclimate. The slope of 

the linear regression describes how microclimate temperature is either buffered (e.g. under 

well-closed forest cover) or amplified (e.g. above the grass in an open meadow), relative to 

macroclimate temperature, as measured by a standardised weather station. The slope will 

be lower than one if temperature is buffered, and higher than one if temperature is 

amplified in the habitat of interest, and therefore the log-transformation of the slope 

parameter will respectively be lower or higher than zero. The equilibrium is the temperature 

for which the regression line crosses the identity line, where microclimate equals 

macroclimate. It is considered constant in a given site and season. For instance, if the forest 
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and grassland depicted here are close to one another and have the same macroclimate, then 

the equilibrium temperature should be considered relatively similar in both habitats. 

 

We used the method described by Gril et al. (2023) to calculate the slope and equilibrium. 

We fitted a separate linear model for each of the 53 sensors, linking hourly temperature 

records during the leaf-on period from a given HOBO sensor to the matching hourly 

temperatures measured by the nearby weather station, representing macroclimate. We 

visually checked linearity, and computed the R squared of the regressions. In order to verify 

that the relationship between microclimate and macroclimate was indeed linear in this 

study, we compared the fit of linear models to the fit of non-linear generalized additive 

models (GAMs). The slope and equilibrium parameters were extracted from each linear 

regression, using the following equation for the latter: equilibrium = intercept / (1 - slope). 

Finally, we used the log of the slope as our response variable in subsequent analyses.  

All analyses were performed in R version 4.1.2 (2021). We used the {tidyverse} and 

{lubridate} packages (Grolemund and Wickham, 2011; Wickham et al., 2019) to handle data 

preparation and visualisation, and {mgcv} to fit GAMs. 

 

2.3.2. Forest structure predictors based on LiDAR data 

On each of the 53 plots, we used the {lidR} package (Roussel et al., 2020) to retrieve 

structural metrics in different buffer sizes around the location of our microclimate sensors, 

ranging from a 1-m to a 100-m radius. Forest structure metrics may indeed differ in the 

optimal resolution used to infer them from LiDAR data (Atkins et al., 2023). We calculated 
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three metrics from these 3D point clouds: maximum height, Plant Area index (PAI) and 

Vertical Complexity Index (VCI). Note that the {lidR} package has predefined functions to 

compute the maximum height and the VCI, whereas users have to sum Plant Area Density 

(PAD) values along the vertical profile (using the LAD function) post hoc to acquire PAI. These 

three metrics give complementary information on the structure of the forest: the height, 

density, and distribution of vegetation along the vertical profile. 

The maximum height was calculated as the highest vegetation point in a given buffer area, 

and was log-transformed to account for non-linear effects (Jucker et al., 2018). Hereafter we 

refer to this predictor variable as log(Hmax). Canopy height is well captured by airborne 

LiDAR, although the combination of a thick understory layer and low point density may lead 

to an underestimation of the height due to the understory mistakenly being considered as 

ground. Here, this issue is minimised since we had a very high point density (70 pts/m² on 

average) so that the mean density of points reaching the ground surface was approximately 

10 points per square metre, even though the flight was during leaf-on conditions (Table 1). 

The PAI is an estimation of the total plant area (leaves and woody structures) per unit 

ground surface area participating in light occlusion, and is based on the Beer-Lambert Law 

considering that light pulses will be attenuated through canopy cover (Vincent et al., 2015; 

Lenoir et al., 2022). It represents the integral, or area under the curve of the Plant Area 

Density (PAD) profiles, and is calculated as the sum of PAD in each vertical “vegetation slice”. 

Here, 1-m slices were used starting from 1.5 m height above the ground up to a maximum of 

40.5 m for the highest slice that contained the maximum canopy height observed across the 

state forest of Blois. 
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Finally, the VCI quantifies the vertical layering of the vegetation (van Ewijk et al., 2011). It is a 

fixed normalisation of the Shannon Index, bounded between 0 and 1, with values close to 0 

indicating a very uneven distribution of vegetation points (i.e. most vegetation points are 

located at the same height, within a single layer), while values close to 1 indicate a very even 

distribution of vegetation points throughout the profile (i.e. most height bins have an equal 

amount of vegetation, suggesting many overlapping layers). 

 

 

Fig. 2. Canopy height (at 50-cm resolution) over our study area, the forest of Blois (France). 

The dots depict the location of our study plots, with temperature sensors measuring air 

temperature. We show three contrasting examples of LiDAR point clouds, with their 
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associated plant area density (PAD) profile for a 20-m radius around the central plot. The 

colour scale on LiDAR profiles corresponds to canopy height as well. 

 

2.4. Modelling the buffering or amplification impact of forest on 

microclimate  

Using linear models, we related the log of the slope (extracted for each of our 53 focal 

sensors) to our three LiDAR-derived metrics. We compared the explanatory power of the 

three LiDAR-derived metrics, separately and jointly in each buffer size, by looking at the 

model r squared (R²) (Kašpar et al., 2021). 

For the multiple regression models, we checked for multicollinearity issues among our three 

predictors using the Variance Inflation Factor (VIF), which remained below the advisable 

threshold of 5 (Sheather, 2009) for each of the three variables. Hence, we kept all three 

LiDAR-derived variables as predictors in our multiple regression models, since the estimated 

coefficient values are still interpretable and trustworthy. Then, we calculated an 

independent R², root-mean-square error (RMSE) and mean absolute error (MAE) of the best 

model using a leave-one-out cross-validation, by rerunning the model iteratively with only 52 

plots for calibration and the remaining plot for validation. Finally, we checked for a potential 

spatial autocorrelation signal in the residuals of the best model. 

To print model coefficients, we used tab_model from the {sjPlot} package (Lüdecke, 2021), 

and to plot model predictions, ggpredict from the {ggeffects} package (Lüdecke, 2018). We 

used the {caret} package for the leave-one-out procedure (Kuhn, 2008). The correlogram of 

model residuals was built with the {ncf} package (Bjornstad and Cai, 2022). 
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2.5. Spatial predictions 

2.5.1. Mapping the temperature buffering or amplification effect 

To predict forest microclimate, we first calculated the three LiDAR-derived metrics over the 

whole forest of Blois, setting the spatial resolution of each raster map to the size of the 

buffer for which our model performed the best. Then, we used the estimated coefficients of 

our linear model to predict microclimate buffering or amplification (the log of the slope) in 

each pixel of the forest. Additionally, we mapped the standard error of predicted means over 

the entire forest in order to spot areas of higher uncertainty of our model, using the predict 

function as well. The microclimate of individual pixels was considered coupled to 

macroclimate temperature if the log of the slope was equal to 0 +/- the maximum error of 

the model, buffered if lower and amplified if higher. We used the R package {terra} and its 

dependencies to handle and represent spatial data (Hijmans et al., 2023). 

 

2.5.2. Predicting and mapping point-in-time or mean microclimate temperature 

Since the equilibrium parameter can be considered stable in a given macroclimate and 

season, we used the median of all 53 calculated equilibria over the leaf-on season (17.47°C) 

as the single equilibrium value for all predictions (Fig. S1, S2). For a given moment in time, 

the slope parameter (back-transformed, i.e. exp(log(slope))) is thus the only input variable 

that varies in space in the following equation: Tmicro = slope x Tmacro + equilibrium x (1 – 

slope). From the magnitude of this buffering or amplification effect, we predicted all hourly 
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microclimate temperature over the whole period on each of our 53 plots, from hourly 

macroclimate temperature recorded by the weather station. We tested the quality of these 

predictions of understory air temperature against the actual and matching hourly 

measurements made by the 53 sensors, by plotting predicted versus observed hourly 

temperatures. We computed the R², RMSE and MAE value of this observed versus predicted 

relationship.  

Once the slope values are mapped over the entire forest, we can derive a map of subcanopy 

air temperature at any time (e.g. a given hour of a given day) if we know the corresponding 

macroclimate air temperature for that same time period (George et al., 2015). For illustrative 

purposes, we focused on the warmest day (14 August 2021) at the hour of maximum (15:00) 

and minimum (05:00) temperature that were recorded by the neighbouring weather station. 

We also mapped the mean of two daily statistics (daily minimum and maximum 

temperatures) over the whole June-September period. We assumed that no significant 

change in forest structure occurred during the period, as no extreme event such as fire or 

major timber harvesting was recorded. Daily minimum and maximum temperatures were 

extracted from the nearby weather station, used as the macroclimate temperature in our 

linear models (see equation above), and the mean statistics were plotted. We also calculated 

the resulting daily offsets to macroclimate (Tmicro - Tmacro). 

Finally, we tested the assumption that the equilibrium can be considered constant over the 

whole study area by generating random equilibrium values following a normal distribution 

for each plot, using the mean and standard deviation of the observed equilibria. Using these 

random equilibrium values resulted in very similar, although slightly less well fitted 

temperature predictions (Appendix 4). We hence determined that using a constant 
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equilibrium fixed at the median introduced minimal error to temperature predictions, while 

vastly enhancing the ease and repeatability of this methodology. 

 

3. Results 

3.1 Computing slope and equilibrium from hourly temperatures 

Temperatures recorded from June to September 2021 by the nearby weather station ranged 

from 4.1°C to 31.8°C, while it ranged from -1.1°C to 40.8°C across our 53 microclimatic 

sensors. The total range of air temperatures recorded simultaneously across our 53 sensors 

(i.e. difference between warmest and coolest temperature recorded by any sensor at a given 

time) averaged 5.5°C, with a maximum range of 18.2°C. 

The sensor-specific linear regressions between macroclimate temperature and microclimate 

temperature to extract the slope and equilibrium parameters had very good fits (median R² = 

93 %, ranging from 80.3 to 96 %; Fig. S1). We also compared these R² from linear regressions 

and the equivalent metric (the proportion of deviance explained) from non-linear GAMs. The 

fits were slightly better for GAMs, but overall very similar (mean difference = 0.2 %, 

maximum difference = 1 %), validating the linearity of the relationship between 

macroclimate and microclimate (Appendix 2). 

The equilibrium was not exactly constant, ranging from 8.7 to 22.2°C around its median at 

17.5°C (except for one outlier at - 102.5°C, resulting from a plot with a temperature highly 

coupled to macroclimate, i.e. a slope very close to 1, here 0.993). However, the equilibrium 

had a narrow quasi-normal distribution, with a standard deviation of 2.4°C around the mean 
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of 17.7°C without the outlier mentioned above (Fig. S1). As expected, the mean and median 

values of the equilibrium were close to the mean macroclimate value over the period 

(18.19°C). The log of the slope — of the regression between microclimate and macroclimate 

— ranged from -0.38 to +0.36 (Fig. S1). 

  

3.2. Identifying the optimal resolution to explain microclimate 

buffering or amplification  

Forest stand structure explained a large proportion of the observed variation in the log of 

the slope parameter, but with great disparities depending on the LiDAR-derived metric used 

as a predictor and the spatial resolution chosen to derive it (Fig. 3). The variable log(Hmax) 

had a very high predictive power (R² of 76 % to 80 %) from 1 m to 10 m-radius around the 

sensor location. The variables PAI and VCI both had lower explanatory power below a 5 m 

radius. Remarkably, while the explanatory power of log(Hmax) and VCI dropped after a 10 

m-radius, PAI maintained roughly the same predictive power from 5 m to 70 m radius, even 

peaking at 20 m radius (Fig. 3). When the three predictors were used simultaneously in a 

single model, the model explaining most of the observed variation in the log of the slope was 

the one with LiDAR-derived predictors calculated for a 5 m radius (Table S1; R² = 91 %), albeit 

we note that from 3 m to 10 m, the R² remained very similar. 
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Fig. 3. Proportion of the observed variation in the log of the slope parameter (extracted from 

the linear relationship between microclimate and macroclimate temperatures) explained by 

each of the three LiDAR-derived predictors, separately (i.e. using simple linear regressions) 

and jointly (i.e. using a multiple linear regression). The proportion of explained variance was 

computed separately for each buffer radius: every metre from 1 to 10 m and then every 10 

m from 10 to 100 m. The best radius (5 m, R² = 91 %) is highlighted with an arrow. 

 

Irrespective of the spatial resolution (radius size) used, the three metrics had a negative 

effect on the log of the slope; taller trees and stands with high PAI and VCI values were more 
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buffered. The PAI and VCI variables had linear effects, while the maximum height had a non-

linear effect after back transformation (Fig. 4). 

 

Fig. 4. Effect of LiDAR-derived variables related to stand structure on the log of the slope 

between microclimate and macroclimate temperatures. All LiDAR-derived variables depicted 

in this figure were computed for a 5 m radius buffer. Only univariate model predictions are 

illustrated here (see Fig. S5 for the predictions of the multivariate model). The log-

transformation of the maximum height allowed us to linearize the relationship, and to use a 

simple linear model to predict microclimate effect. Here, the prediction is depicted with a 

back transformation – exp(log(Hmax)) – to show directly the effect of maximum height on 

the log of the slope parameter. 

 

The R² of the model was 89 %, the RMSE was 0.059 and the MAE was 0.046 after a leave-

one-out cross validation procedure (Fig. 5). Residuals of the models showed no spatial 

autocorrelation (Fig. S7). 
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Fig. 5. Observed versus predicted log of the slope, from the best model with all three LiDAR-

derived metrics at a 5-m buffer size, after a leave-one-out cross validation procedure. The 

colour gradient corresponds to the maximum height calculated around each plot with a 5-m 

buffer. 

 

3.2. Mapping the buffering or amplification effect 

Although the vast majority of the forest understory (91.4 % of the 275,500 10-m pixels 

covering the forest) had a buffered temperature compared to the standardised weather 

station (green colours on Fig. 6a), significant parts (5.9 %) of the forest had a coupled 

temperature that did not deviate significantly from the macroclimate (beige colours in Fig. 

6a). Areas with low or sparse canopies (2.7 %) even showed the reverse trend, an 
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amplification of temperature with more extreme temperatures than recorded by the 

weather station (yellow colour in Fig. 6a). 

Some areas showed more uncertainty in temperature predictions (darker red colours in Fig. 

6b), typically in situations where the model had to extrapolate beyond the conditions 

observed in the calibration range. We indeed have a larger range of predicted log of the 

slope (- 0.59 to + 0.56) compared to the range of observed log of the slope (- 0.38 to + 0.36). 

This extrapolation concerned either stands with taller trees or denser and more complex 

vegetation layering or, alternatively, areas with very low, sparse and single layering of 

vegetation cover, such as road verges. The median standard error across the whole forest 

was 0.012, and the maximum 0.069 (Fig. 6, S6). 
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Fig. 6. Map of understory air temperature buffering or amplification over the forest of Blois 

(a), green for buffering, yellow for amplification, along with a map of the uncertainty of the 

predictions (b) by mapping the standard error – darker red colours suggest a higher 

uncertainty in predictions. 

 

3.3. Predicting understory temperatures 

Predicted understory temperatures (calculated from the predicted slope and median 

equilibrium) were indeed related to the matching observed temperatures of our 53 plots (R² 

= 91 %, Fig. 7). The RMSE was 1.2°C, and MAE was 0.9°C. Plots with amplified temperature 

had the greatest errors (Fig. 7, S10). If we separate plots were microclimate temperature is 

buffered (N = 45) from those where it is amplified (N = 7), model performance metrics 

showed an error in predicted hourly temperatures almost twice as large for amplified plot 

(R² = 87.9 %, RMSE = 1.95°C, MAE = 1.44°C, Fig. S10) compared to buffered plots (R² = 92.3 

%, RMSE = 1.06°C, MAE = 0.79°C). 
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Fig. 7. Predicted versus observed hourly temperatures (random subset of n = 10,000 for 

each), separately for plots with a buffered temperature (log of the slope < 0, N = 45 plots, 

left) and with an amplified temperature (log of the slope > 0, N = 7 plots, right). Note that no 

plots have an exactly coupled temperature (log of the slope = 0). The colour gradient is the 

same as Fig. 6: green for buffered, and yellow for amplified plots. The model R², RMSE and 

MAE were calculated separately. For a similar figure with all plots at once, see Fig. S10. 

 

Finally, as an illustration, we predicted the temperature on the 14th of August across the 

entire forest, focusing on the coolest (Tmacro = 14.3°C) and warmest (Tmacro = 31.8°C) hours of 

that day (5:00 and 15:00, respectively), according to the nearby weather station. At 05:00, 

the total range of predicted microclimate temperature was 3.8°C – from 11.9 to 15.7°C). At 

15:00, the range was 17.2°C – from 25.4 to 42.6°C (Fig. 8). We also predicted the mean of 

daily statistics over the studied period across the forest: mean minimum temperature 
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ranged from 8.4 to 14.6°C and mean maximum temperature from 21.4 to 29.9°C (Fig. S8). 

Daily offsets (microclimate minus macroclimate) of maximum temperatures from all days 

from June to September ranged from - 5°C to + 13.2°C, and for minimum temperature from - 

6.4°C to + 4.5°C (Fig. S9). 

 

 

Fig. 8. Predicted air temperature at 1-metre high for (a) the warmest (Tmacro = 31.8°C) and (b) 

the coldest (Tmacro = 14.3°C) time of the warmest day, according to the nearby weather 

station, during summer 2021 (14th of August, 15:00 and 05:00 respectively) in the forest of 

Blois. The spatial resolution of the predictions is 10 m. Note that the colour scale 

corresponds to different ranges of temperature in (a) and (b). See Fig. S8 for similar maps, 
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but instead of point-in-time temperature, two statistics of understory air temperature: the 

mean of daily maxima and the mean of daily minima during summer 2021. 

 

4. Discussion 

4.1. Using LiDAR to relate forest structure to temperature buffering 

or amplification  

We showed that three metrics derived from airborne LiDAR that describe forest structure – 

maximum canopy height, plant area index (PAI), and vertical complexity index (VCI) – can be 

sufficient to map understory air temperature. Errors increased under very open vegetation 

cover, similarly to former findings from George et al. (2015), with errors in predicted 

temperatures doubling (from 1 to 2°C) in amplified habitats compared to buffered ones. 

However, our rather simple linear model with LiDAR predictors had a very good explanatory 

power on microclimate (R² = 91 %), resulting in good performance as well in hourly 

temperature predictions, validated against observations (R² = 91 % over all plots, 89 % in 

amplified plots, 92 % in buffered plots). 

The effects of our three predictors are consistent with what has been reported so far in the 

scientific literature. First, maximum height is known to drive microclimate temperature (Frey 

et al., 2016; George et al., 2015; Kašpar et al., 2021). Here, using the log transformation, we 

confirm a non-linear effect of vegetation height on the magnitude of the buffering effect: an 

increase in the first metres of height has a greater impact on microclimate, similarly to 

former work by Jucker et al. (2018). Second, leaf or plant area index (LAI or PAI) are among 
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the best predictors of microclimate temperature beneath trees canopies (Hardwick et al., 

2015; Jucker et al., 2018). Note that whenever the term LAI is employed, it often actually is 

PAI, since discriminating leaves from trunks and branches from airborne LiDAR point clouds 

or other methods remains challenging. One of the main advantages of PAI is that it 

integrates not only the top canopy, but also the vegetation layering underneath (Lenoir et 

al., 2022), information that is lacking when considering canopy structure from 2D optical 

imagery or photogrammetric products (Marsh et al., 2022). The sub-canopy and understory 

layers are indeed significant drivers of microclimate (Kovács et al., 2017; Stickley and 

Fraterrigo, 2021). Third, VCI complements this information, also accounting for vegetation 

layering underneath the upper canopy, but rather focusing on the evenness of its vertical 

distribution. Even though VCI was used to describe forest succession (van Ewijk et al., 2011), 

to our knowledge, it has not yet been used as a microclimate predictor. We argue for its use 

as a major metric quantifying the vertical complexity in future endeavours to model 

microclimate. 

A taller forest stand with massive aboveground and well-distributed foliage can be compared 

to a thicker, denser, and multi-layered insulating material, resulting in an enhanced buffering 

capacity (De Frenne et al., 2021; Frey et al., 2016; Jucker et al., 2018). On the other hand, our 

study shows that a forest with a low canopy and reduced PAI and VCI has the opposite effect 

on temperature. Microclimate amplification is a known phenomenon (Woods et al., 2021), 

but it is much less often considered than buffering, for which we hypothesise two main 

reasons. First, open areas are often discarded because low cost microclimate sensors, even if 

shielded, are less reliable in exposed conditions and prone to overheating (Maclean et al., 

2021; Terando et al., 2017). Nevertheless, organisms are also subjected to overheating if 

they stand in full sun, and microclimate temperature sensors placed directly near the habitat 
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of interest could be more ecologically relevant than standardised, unbiased weather stations 

(Ashcroft, 2018). The warmer or cooler temperatures we recorded in open areas are thus 

likely to be relevant from a living organism perspective, even if prone to higher 

measurement uncertainties – and even if living organism are likely to have different thermal 

properties than temperature sensors. Second, open areas are often used as references, 

proxies for macroclimate, and are not the focus of most forest microclimate studies. 

However, open or sparsely vegetated areas are very common either in managed 

(regeneration stages, roads, intraforest clearings) or natural (canopy gaps, savannah, rock 

boulders) forested landscapes (Kovács et al., 2017; Pincebourde and Suppo, 2016; Tymen et 

al., 2017) and deserve to be studied as components of forest environments. Moreover, close 

to edges or under a certain threshold of PAI, even forested areas can show patterns of 

temperature amplification (von Arx et al., 2013; Williamson et al., 2021). Beyond forests, 

open habitats such as crops, peatlands or deserts have a temperature that may deviate 

substantially from weather station temperature and exhibit strong spatial heterogeneity in 

microclimates as well. We therefore recommend a generalised approach, integrating both 

buffered and amplified microclimates in future investigations. 

 

4.2. Choosing the best scale to assess forest structure and 

microclimate 

Our three LiDAR-derived variables that describe forest structure all had a very high 

explanatory power on the slope parameter when they were calculated in radii from 5 to 10 

m (R² > 76 %), which is smaller than the representative spatial grain for similar forest 
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structure metrics (25 to 75 m resolution) determined by Atkins et al. (2023). Beyond a 10 m 

radius, the predictive power of log(Hmax) and VCI abruptly dropped, while PAI remained 

highly informative up to a 70 m radius. Contrary to PAI and VCI, log(Hmax) was a good 

predictor at very fine spatial resolutions, even as low as a 1 m radius. Smith-Tripp et al. 

(2022) used photogrammetry to calculate canopy height, and found that the best explaining 

scale on microclimate temperature was 15 m, a slightly larger scale than the one we 

identified, but still close to our results. Kašpar et al. (2021) and Frey et al. (2016) found 

coarser resolutions as the most informative, but the latter only tested a resolution of 25 and 

250 metres. The optimal resolution may vary according to the stand type, and be point-

density or -intensity dependent, in relation with the height of flight and LiDAR sensor 

properties like pulse frequency. For instance, in dense tropical rainforests, comparable 

results could be obtained only with very high-density LiDAR data. Therefore, results may not 

be strictly comparable across studies. As such, the scale of effect of metrics should always be 

tested when considering new airborne LiDAR datasets (Atkins et al., 2023). 

Another potential issue is the accuracy of their Global Navigation Satellite System (GNSS), 

which can be much lower than specified by manufacturers under forest cover (Naesset and 

Jonmeister, 2002). When choosing very small spatial resolutions (1 to 3 m buffer) for LiDAR-

derived metrics, the microclimate temperature sensor may in fact, due to the poor accuracy 

of GPS coordinates in forests, be located outside the area under consideration (Atkins et al., 

2023). We advise not to choose a scale that is too small, if the accuracy of sensor localisation 

from GPS cannot match it. Instead, to further improve the resolution of microclimate 

temperature maps, another solution could be to keep a 5 to 10-m sized buffer, but derive 

metrics in “moving windows”, a technique often used to “soften” images and to derive 
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textural information in landscape ecology (Hagen-Zanker, 2016). There are few applications 

with LiDAR data, as processing time can be very long considering the huge datasets. 

Whether we should always strive to the greatest possible accuracy depends on the scientific 

question, the organisms under study or ecological patterns we want to explain, and the 

application envisioned (Bennie et al., 2014). We do need ecologically-relevant maps, with 

spatial resolutions meaningful for biodiversity or management (Bramer et al., 2018; 

Zellweger et al., 2019b). For instance, a common resolution used for floristic inventories in 

forests is 400 m² (corresponding to an 11.3-m radius). Making maps with a 2 m resolution 

will not necessarily be useful to explain processes happening within the proximal resolution 

of understory plant communities, although information on within-plot microclimate diversity 

could be useful to explore plant distribution. In other situations, sub-meter resolution may 

be relevant, for instance, if one wants to study whether tree holes or epiphytes can 

efficiently protect tropical frogs against lethal temperatures (Scheffers et al., 2014). If so, 

terrestrial or UAV-borne sensors can help to take an even closer look at forest structure, spot 

such microhabitats and predict their buffering capacity (Hoffrén and García, 2023). 

 

4.3. Beyond LiDAR-based vegetation structure 

Forest structure is hardly the only driver of microclimate temperature buffering: topography 

or hydrology can play major roles as well (Greiser et al., 2018; Jucker et al., 2018; Zellweger 

et al., 2019a). For instance, northern-oriented slopes or places characterised by higher soil 

moisture are associated with a higher microclimate temperature buffering potential (Hoffrén 

and García, 2023; Zellweger et al., 2019a). The distance to water bodies or rivers is another 
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major driver described in the scientific literature (McLaughlin et al., 2017). In our case, the 

Topographic Wetness Index and distance to the nearest river were calculated and had no 

significant effect (see Fig. S3, S4), probably because the area is fairly flat, and the forest of 

Blois does not have any large, permanent rivers in its boundaries. However, depending on 

the context, these variables should be included in predictive models as well. 

Another category of relevant metrics involves landscape features, such as the proportion of 

forest cover in a wide buffer or the distance to the nearest forest edge (Meeussen et al., 

2021). However, our sampling design did not allow us to test for these landscape effects on 

the magnitude of the buffering or amplification effect. Adding the effect of edges to our 

models would have necessitated a different protocol, with several sensors placed along a 

gradient of edge distances, including intraforest edges such as clearings or roads that cross 

the forest of Blois. Future endeavours to spatialise microclimate temperature or other 

variables such as relative humidity could focus on this question of forest edges to improve 

resulting maps. 

Lastly, especially so in a managed forest, the buffering or amplification capacity will be 

dynamic over time, as thinning or harvest practices will drastically impact the resulting 

microclimate effect and its spatial distribution. Up-to-date data is required to reflect the 

result of forestry management (Greiser et al., 2018). Unfortunately, the high costs of an 

airborne LiDAR campaign make it hard to repeat acquisitions in time. However, other remote 

sensing techniques such as photogrammetry may help to fill this gap and obtain a temporal 

series of forest structure from optical images (Randin et al., 2020). Spaceborne radar data, 

for example Sentinel-1 time-series, has the potential to provide variables sensitive to 
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changes in forest structure that have proven their utility in biodiversity modelling (Bae et al., 

2019). 

Coupled with Sentinel-2 multispectral imagery, radar could deliver relevant predictors at 

high spatial resolution (10 m) and high temporal resolution (two or more images per month). 

Combining LiDAR with other remote sensing techniques may also be useful to obtain 

information complementary to structure, such as canopy phenology or water status 

(Zellweger et al., 2019b).  

 

4.4. Applications: why map forest temperature buffering or 

amplification? 

We propose to model one integrative and mechanistic metric representing the microclimate 

effect (the “log of the slope”). This approach differs from modelling offsets (the difference 

between macroclimate and microclimate) or temperature itself (Gril et al., 2023). For 

instance, Davis et al. (2019), Frey et al. (2016) and George et al. (2015) modelled directly 

daily or sub-daily temperatures, or statistics such as the mean minimum and maximum 

temperature as response variables. With our parsimonious approach, once the buffering or 

amplification capacity is modelled, we simply need the equilibrium to infer the whole linear 

relationship between microclimate and macroclimate. Although it is likely to contribute to 

predictions errors, the equilibrium can be considered constant in a given site (e.g. one forest) 

and fixed at its median, or approached by mean macroclimate. Then we have enough 

information to easily retrieve any point-in-time or statistic of microclimate temperature. The 

only thing needed is macroclimate temperature data with a matching temporal resolution, 
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either using nearby weather stations or global databases such as ERA5 or E-OBS, with hourly 

macroclimate temperature at coarse spatial resolutions (Cornes et al., 2018; Muñoz-Sabater 

et al., 2021). Spatializing this forest buffering or amplification effect can have multiple 

applications (Zellweger et al., 2019b). Here, we listed a few examples of how such a map can 

be useful, aside from inferring any microclimate temperature of the understory. 

(1) To study one of the many temperature-related processes, such as thermoregulation 

(Milling et al., 2018), photosynthesis (Miller et al., 2021) or phenology (Jackson, 1966), as 

forest understory species may not only have adapted to temperature itself, but also to 

temperature range and variation through time. 

(2) To model the thermal connectivity of habitats at the landscape level, and build current 

density maps based on a fine-scale spatialized buffering effect (Huang et al., 2022; Milanesi 

et al., 2017). Some forest-dwelling species (such as insects, birds, amphibians or ungulates) 

have to move daily or seasonally for foraging, mating or nesting. Here, road verges or clear-

cut areas with amplified temperatures may impair the thermal connectivity for forest 

specialists (e.g. the buffered forest stands located east of the forest of Blois may be hard to 

reach for some species, as they are surrounded by areas with large temperature 

amplification). 

(3) To improve species distribution and redistribution models with climate change, and to 

spot thermal microrefugia with buffered climatic conditions (Lenoir et al., 2017). Species 

distribution models incorporating microclimate may yield great discrepancies compared to 

the usual ones based on macroclimatic grids (Haesen et al. 2023; Stickley and Fraterrigo, 

2023). Local extinction risks and thermophilization, i.e. the gain of warm-adapted and loss of 

cold-adapted taxa, may be mitigated by the thermal insulating function of forest canopies 
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(Zellweger et al., 2020). This is especially relevant to the conservation of threatened 

understory species facing climate change, and to prioritise suitable refuges that may 

represent long-term microrefugia. Adding directly a metric quantifying the buffering or 

amplification effect as a predictor of species distributions might be a great step forward. 

(4) To assist forest management decisions under climate change. For foresters, this kind of 

map may help, for instance, to evaluate the risk for tree regeneration, as young seedlings 

and saplings are especially sensitive to climatic extremes (von Arx et al., 2013). Sessile oaks 

seedlings have been shown to be sensitive to local microclimatic gradients, in terms of 

germination, survival and performance (Meeussen et al., 2022). We found that all 

regeneration stages in our study forest, with low or sparse canopy, were subjected to strong 

amplification of temperature extremes. This means more exposure to frost or heat shock, in 

addition to the risks of drought associated with high temperatures. Forestry has a central 

role in mitigating local effects of global warming through microclimate regulation 

(Christiansen et al., 2022; Greiser et al., 2018). Another “burning issue” in forest 

management is wildfire control, and these areas of amplified temperature extremes should 

be especially at risk, deserving close surveillance (Laurance, 2004). 

(5) To make informed decisions about landscape planning for a human-liveable future, 

especially in the case of urban forests such as the forest of Blois. Predictive models may 

supply managers with site-specific, quantitative advice on how to strengthen urban forest 

buffering capacity by manipulating forest structures. A map of forest microclimate effect 

may also help to select cool spots that may act as cooling recreational areas to humans 

during heatwaves, and create safe havens and walkable paths to escape the dreaded urban 

heat island effect (Gillerot et al., 2022). 
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In brief, this study brings interesting prospects towards efficiently obtaining maps of forest 

structure and microclimates, as airborne LiDAR point clouds are becoming more and more 

available in Europe and beyond (Moudrý et al., 2022). We hope our flexible approach will be 

applied across different biomes and forest types, with LiDAR or other remote sensing 

technologies, for high-resolution maps of forest thermal environments. 
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